El anillo de Thomson (II)

prev.gif (1231 bytes)home.gif (1232 bytes)next.gif (1211 bytes)

Electromagnetismo

Inducción
electromagnética
Espiras en un campo
magnético variable (I)
Espiras en un campo
magnético variable (II)
Demostración de
la ley de Faraday
Acelerador de partículas
El betatrón
Varilla que se mueve
en un c. magnético
Caída de una varilla
en un c. magnético
Movimiento de una
espira a través de
un c. magnético
Corrientes de
Foucault (I)
Corrientes de
Foucault (II)
Inducción homopolar
Un disco motor y
generador
Autoinducción.
Circuito R-L
Circuitos acoplados
Oscilaciones eléctricas
Elementos de un
circuito de C.A.
Circuito LCR en serie
Resonancia
Medida de la velocidad
de la luz en el vacío
Efectos mecánicos de
la ley de Faraday
El anillo de Thomson (I)
marca.gif (847 bytes)El anillo de Thomson (II)
El circuito RC de carga

El circuito RCL de descarga

Ley de Faraday

Fuerza magnética sobre el anillo

Ecuación del movimiento del anillo

Balance energético e impulso de la fuerza magnética

java.gif (886 bytes)Actividades

 

En esta página se simula un dispositivo para la demostración de la ley de Lenz que está descrito en el artículo de Tanner, Loebach, Cook, y Hallen. A pulsed jumping ring apparatus for demostration of Lenz’s law. Am. J. Phys. 69 (8) August 2001 pp. 911-916.

anillo1_1.gif (3748 bytes) El dispositivo consta de un solenoide de 5 cm de diámetro con un núcleo hecho de varillas de hierro. El solenoide está unido a un conjunto de condensadores que se cargan mediante una fuente de alto voltaje. Los condensadores, la fuente y la resistencia forman un circuito RC, que se carga cuando se conecta a la fuente y se descarga cuando se conecta al solenoide.

 

El circuito RC de carga

anillo1_2.gif (1418 bytes) Estudiamos el proceso de carga y descarga de un condensador en serie con una resistencia.

Cuando se conecta el circuito RC a una fuente V, el condensador incrementa su carga con el tiempo hasta que adquiere una carga máxima Q, dada por

Q=V·C

 

El circuito RCL de descarga

anillo1_3.gif (1412 bytes) Una vez cargado el condensador, se desconecta de la batería y se conecta al solenoide.

La corriente en el solenoide se puede calcular suponiendo un circuito RCL con la condición inicial de que la diferencia de potencial entre las placas del condensador es V.

Si el circuito tiene un comportamiento amortiguado g <w 0 la carga en el condensador disminuye con el tiempo de la forma

Las constantes A y j se calculan a partir de las condiciones iniciales. En el instante t=0, el condensador se encuentra cargado con una carga Q o bien, la diferencia de potencia entre sus placas es V=Q/C, y la intensidad que circula por el circuito es cero Is=dq/dt=0.

La expresiones de la carga del condensador y de la intensidad que circula por el solenoide son, respectivamente

anillo1_4.gif (3349 bytes)

En la figura podemos observar la representación de la intensidad Is en función del tiempo cuando la resistencia del circuito es pequeña (g <<w 0) y cuando es grande (g <w 0).

En la figura de la izquierda, apreciamos que la amplitud de la intensidad decrece exponencialmente con el tiempo, característica principal de las oscilaciones amortiguadas.

En la de la derecha, vemos que la intensidad crece (decrece)  desde cero hasta un valor máximo (mínimo) en el instante t=p /(2w ) y luego decrece (crece) hasta hacerse próxima a cero.

 

Ley de Faraday

La corriente que circula por el solenoide produce un campo magnético que varía con el tiempo. El flujo F de dicho campo a través del anillo es

F =M·Is

donde M es el coeficiente de inducción mutua del sistema formado por el solenoide y el anillo, Is es de la intensidad de la corriente en el solenoide.

Aplicando la ley de Faraday, se obtiene la fem inducida Ve en el anillo como resultado del cambio del flujo que lo atraviesa con el tiempo. Aplicando la ley de Lenz, se determina el sentido de la corriente inducida.

La corriente inducida Ia en el anillo de resistencia Ra es

Nos fijaremos principalmente en el comportamiento exponencial decreciente de la amplitud de la intensidad Is. Podemos escribir la intensidad en el anillo como

Ia=-k·I0s·exp(-g t)

Donde k es una constante de proporcionalidad que depende a su vez del tiempo.

 

Fuerza magnética sobre el anillo

anillo_2.gif (5028 bytes) Como podemos observar en el applet que dibuja las líneas del campo magnético producido por las espiras de un solenoide. El campo magnético es paralelo al eje en el interior del solenoide, pero fuera del solenoide las líneas de campo divergen tal como se observa en la figura

El campo magnético del solenoide tiene simetría cilíndrica, y en la posición z que ocupa el anillo de radio a, el campo tiene dos componentes una a lo largo del eje Z, Bz y otra a lo largo de la dirección radial By.

La fuerza sobre el anillo (enlace a fuerza) es

anillo_3.gif (3424 bytes)

En la figura vemos que la fuerza sobre un elemento de corriente dl tiene dos componentes

una a lo largo del eje Z, dFz=-Ia·By·dl¸ (la corriente es positiva cuando circula en el sentido contrario a las agujas del reloj, el opuesto al que se muestra en la figura)

y otra a lo largo de la dirección radial, dFy=-Ia·Bz·dl.

Las componentes radiales se anulan de dos en dos mientras que las componentes a lo largo del eje Z se suman. La fuerza resultante que ejerce el campo magnético B producido por el solenoide sobre la corriente inducida Ia en el anillo tiene la dirección del eje Z y su módulo vale

Fz=-2p a·Ia·By.

Como el campo By es proporcional a la corriente que circula por el solenoide (cuya amplitud decrece exponencialmente con el tiempo). Por otra parte, la amplitud de la corriente inducida Ia decrece exponencialmente con el tiempo. La amplitud de fuerza sobre la espira también decrece exponencialmente con el tiempo.

 

Ecuación del movimiento del anillo

Mientras la intensidad en el solenoide crece de cero a su valor máximo en el instante t=p /(2w ) , el anillo experimenta una intensa fuerza de repulsión durante un corto intervalo de tiempo.

Esta fuerza la podemos escribir de la forma

La fuerza decrece exponencialmente con el tiempo con una constante tiempo t que es mucho menor que el tiempo de vuelo del anillo.

Sobre el anillo actúan dos fuerzas, la fuerza magnética y el peso. Suponemos para no complicar excesivamente los cálculos que el rozamiento del aire es despreciable, lo que confirman los resultados experimentales.

Integrando respecto del tiempo, teniendo en cuanta que en el instante t=0, la velocidad inicial es cero v=0.

Integrando de nuevo respecto del tiempo, y teniendo en cuenta que para t=0, x=0.

La máxima altura se alcanza cuando v=0. Ahora bien, en el instante en el que se alcanza la máxima altura podemos suponer que ha transcurrido suficiente tiempo para la exponencial tenga un valor próximo a cero.

 

Balance energético e impulso de la fuerza magnética

Si toda la energía almacenada en el condensador se convirtiese en energía potencial del anillo, se elevará a alturas muy grandes. Por ejemplo, para un condensador de 12.7 m F cargado a una diferencia de potencial de 2000 V, y un anillo de cobre de 0.0389 kg, mgh=CV2/2. h=66.6 m. cuando se elevación real es de unos cuantos centímetros como se podrá comprobar en la experiencia simulada.

Solamente una pequeña fracción f de la energía almacenada en el condensador se convierte en energía cinética inicial del anillo, el resto se pierde en las resistencias, radiación, etc.

Por otra parte, la fuerza F de corta duración proporciona un impulso que hace que el anillo adquiera una velocidad inicial v0.

De ambas ecuaciones obtenemos el valor de F0.

Así pues, la dependencia de la altura máxima que alcanza el anillo con V ( diferencia de potencial entre las placas del condensador cargado) es de la siguiente forma

es decir

xmáx=AV2-BV

Donde A y B son parámetros a determinar en el ajuste de los datos experimentales a un polinomio de segundo grado, de los que se deducen f (fracción de energía del condensador que se convierte en energía mecánica) y t (constante de tiempo de la fuerza magnética).

 

Actividades

El applet simula la experiencia descrita en el artículo mencionado al principio de esta página. Se elige un anillo entre cuatro posibilidades:

  • Anillo de cobre de 0.0389 kg de masa a temperatura normal o enfriado en nitrógeno líquido
  • Anillo de aluminio de 0.00752 kg de masa a temperatura normal o enfriado en nitrógeno líquido.

Se introduce la diferencia de potencial V de la fuente de alta tensión entre 600 y 2000 V.

Se pulsa el botón titulado Empieza.

Se observa como el anillo se eleva hasta una altura máxima, que puede medirse en una regla vertical dispuesta al efecto. Al lado del anillo dos vectores representan las magnitudes relativas de la fuerza magnética (en rojo) y del peso (en azul).

En la parte derecha de la gráfica, se representa la velocidad del anillo en función del tiempo (en azul) y y la fuerza magnética sobre el anillo en función del tiempo.

Los datos de la experiencia (V, xmáx) se recogen en el control área de texto situado a la izquierda del applet.

Una vez que se ha recogido suficientes datos se pulsa el botón titulado Enviar para su tratamiento en el applet situado al final de la página.

SolenoideApplet aparecerá en un explorador compatible JDK 1.1
                  
Pulsar el botón titulado Enviar, para efectuar el tratamiento de los datos de la experiencia

Este applet representa los datos experimentales y el polinomio de segundo grado que ajusta mejor a dichos datos. El programa calcula los coeficientes del polinomio

a[0]+a[1]x+a[2]x2.

El primer coeficiente a[0] será próximo a cero, el segundo a[1] es el que hemos denominado -B y el tercero a[2] es el coeficiente A.

SolenoideApplet aparecerá en un explorador compatible JDK 1.1