Movimiento vertical de un conductor en un campo magnético constante

prev.gif (1231 bytes)home.gif (1232 bytes)next.gif (1211 bytes)

Electromagnetismo

Inducción
electromagnética
Espiras en un campo
magnético variable (I)
Espiras en un campo
magnético variable (II)
Demostración de
la ley de Faraday
Acelerador de partículas
El betatrón
Varilla que se mueve
en un c. magnético
marca.gif (847 bytes)Caída de una varilla
  en un c. magnético
Movimiento de una
espira a través de
un c. magnético
Corrientes de
Foucault (I)
Corrientes de
Foucault (II)
Inducción homopolar
Un disco motor y
generador
Autoinducción.
Circuito R-L
Circuitos acoplados
Oscilaciones eléctricas
Elementos de un
circuito de C.A.
Circuito LCR en serie
Resonancia
Medida de la velocidad
de la luz en el vacío
Efectos mecánicos de
la ley de Faraday
El anillo de Thomson (I)
El anillo de Thomson (II)
Cálculo de la fem

Movimiento de la varilla

java.gif (886 bytes)Actividades

 

Hemos analizado en la página anterior el movimiento de una varilla que desliza sobre dos guías paralelas horizontales en un campo magnético constante. Para mantener la velocidad constante de la varilla era necesario aplicar una fuerza. En el estado estacionario, el trabajo de dicha fuerza se disipa en la resistencia en forma de calor.

Supongamos que las guías conductoras paralelas están en el plano vertical, y la varilla desliza sin rozamiento, dejándola caer desde una altura h.

 

Cálculo de la fem

fem9_1.gif (2115 bytes) Supongamos que el campo magnético B es constante y es perpendicular al plano determinado por las guías y la varilla. El flujo del campo magnético a través del circuito de forma rectangular ABCD señalado en la figura es

donde a·x es el área del rectángulo ABCD.

Al moverse la varilla CD la dimensión x del rectángulo disminuye. De acuerdo a la ley de Faraday, la fem inducida es

Como x disminuye con el tiempo su derivada es negativa.

Sentido de la corriente inducida

Si el campo magnético apunta hacia el lector, al disminuir el área S, disminuye el flujo F , el sentido de la corriente inducida es el contrario a las agujas del reloj.

Si la resistencia del circuito es R, la intensidad de la corriente inducida es i=VE/R=vBa/R.

Resistencia de la varilla

En esta experiencia vamos a suponer que las guías son superconductoras o bien, que su resistencia es despreciable frente a la de la varilla. La varilla tiene una sección fija de 1 mm2 pero su longitud a puede se puede modificarse dentro de ciertos límites.

Los materiales disponibles para fabricar la varilla figuran en la siguiente tabla

Conductor Densidad (kg/m3) Resistividad r (W ·m)
Aluminio 2700 2.8·10-8
Cobre 8930 1.75·10-8
Hierro 7880 9.8·10-8
Plomo 11350 22.1·10-8
Wolframio 19340 5.5·10-8

La masa de la varilla se obtiene multiplicando la densidad por el volumen de un cilindro de sección S y longitud a. La resistencia se calcula mediante la siguiente fórmula: se multiplica la resistividad r por longitud L=a, y se divide por la sección normal S

 

Movimiento de la varilla

Como vemos en la figura, sobre la varilla actúan dos fuerzas, el peso mg y la fuerza Fm que ejerce el campo magnético sobre la corriente inducida i. Esta fuerza se opone siempre al movimiento de la varilla, como podremos comprobar.

fem9_2.gif (2048 bytes) Cuando circula por la varilla CD una corriente i, el campo magnético B ejerce una fuerza

El vector unitario ut que señala el sentido de la corriente y el campo B son mutuamente perpendiculares, la longitud del conductor es a, por lo que el módulo de la fuerza magnética es

Fm=iBa=vB2a2/R

Su sentido es el indicado en la figura (hacia arriba, contrario al peso)

La ecuación del movimiento de la varilla es

la fuerza magnética es proporcional a la intensidad inducida y por tanto, a la velocidad de la varilla.

Esta es la ecuación del movimiento de una esfera que cae en el seno de un fluido viscoso, si se desprecia el empuje.

Integrando obtenemos la expresión de la velocidad en función del tiempo

La velocidad aumenta desde cero hasta un valor máximo constante, denominado velocidad límite.

Podemos fácilmente comprobar que el valor de la velocidad máxima no depende de la longitud a ni de la sección S de la varilla.

Esta velocidad se podría haber obtenido sin necesidad de integrar la ecuación del movimiento. La fuerza magnética Fm va creciendo desde cero, hasta que su valor se hace igual al peso, mg. En ese momento, la fuerza neta sobre la varilla es cero y velocidad de la varilla se hace constante.

Si la velocidad crece hasta alcanzar un máximo, la intensidad de la corriente inducida crece hasta alcanzar un máximo.

y es independiente del valor de la resistencia R del circuito.

Una vez obtenida por integración la variación de la velocidad de la varilla con el tiempo, una segunda integración nos permite determinar la altura de la varilla con el tiempo, sabiendo que en el instante inicial parte de la altura h. La ecuación es similar a la que obtuvimos en el estudio del movimiento vertical de una esfera en el seno de un fluido.

 

Actividades

El applet nos permite estudiar el movimiento vertical de una varilla que desliza sobre guías verticales paralelas, situadas en un campo magnético uniforme perpendicular al plano formado por las guías y la varilla.

Introducimos

  • El campo magnético (en gauss), que puede ser un número positivo (el campo magnético apunta hacia el lector), o negativo el campo magnético apunta hacia dentro, de sentido contrario al anterior.
  • La longitud de la varilla (en cm), un número menor que 10.
  • Finalmente, podemos elegir el material del que está hecho la varilla: aluminio, cobre, hierro, plomo, wolframio.

Se pulsa el botón titulado Empieza, y la varilla empieza a caer desde una altura de 100 cm. Se puede detener la marcha del "experimento" en cualquier momento pulsando en el botón titulado Pausa. Se reanuda volviendo a pulsar el mismo botón, titulado ahora Continua. Se puede ver la evolución de la "experiencia" paso a paso pulsando el botón titulado Paso.

Sobre la varilla se dibuja los siguientes vectores:

  • El peso mg, flecha vertical hacia abajo de color negro
  • El campo magnético B, flecha horizontal de color rojo, apuntando hacia adentro (color azul claro) o hacia afuera (color rosa) del plano del applet.
  • El sentido de la corriente inducida, flecha de color azul a lo largo de la varilla
  • La fuerza magnética, Fm, flecha de color negro vertical apuntando hacia arriba.

En la parte derecha del applet, se representa, en color rojo, la velocidad de la varilla en función del tiempo. En color azul, se representa la intensidad de la corriente inducida en función del tiempo.

El origen de esta gráfica se ha desplazado a la mitad del applet, a fin de visualizar tanto los valores positivos (en sentido contrario a las agujas del reloj) como los valores negativos (en el sentido de las agujas del reloj).

En la parte superior del applet, se proporcionan los valores numéricos de la máxima velocidad y de la máxima intensidad.

Se recomienda al lector dibujar sobre un papel el sistema formado por la varilla y las guías, situados en un campo magnético, con el siguiente convenio:

  • Un círculo con un punto en su interior, indica que el campo magnético es perpendicular al plano del papel que apunta hacia el lector.
  • Un círculo con una cruz representa un campo magnético perpendicular al plano del papel que apunta hacia dentro, en sentido contrario al anterior.
  1. Razonar si el flujo aumenta o disminuye
  2. Aplicar la ley de Lenz y dibujar el sentido de la corriente inducida
  3. Dibujar la fuerza que ejerce el campo magnético sobre la corriente inducida en la varilla. ¿Es de sentido contrario al peso?

Ejemplo

Sea una varilla de 8 cm de longitud y 1 mm2 de sección, que se mueve verticalmente en un campo magnético uniforme de 300 gauss, que apunta hacia el lector, si la varilla está hecha de aluminio, determinar la velocidad máxima que alcanza la varilla y la corriente inducida máxima.

FemApplet aparecerá en un explorador compatible JDK 1.1