Electromagnetismo |
Campo eléctrico La ley de Coulomb El motor de Franklin Campo y potencial de una carga puntual Campo y potencial de dos cargas Dipolo eléctrico Línea de cargas. Ley de Gauss. Modelo atómico de Kelvin-Thomson La cubeta de Faraday. Conductores Generador de Van de Graaff Carga inducida en un conductor Esfera conductora en un campo uniforme Un péndulo que descarga un condensador. Condensador plano- paralelo Condensador cilíndrico Condensador con un dieléctrico. Fuerza sobre un dieléctrico Carga y descarga de un condensador Medida de la velocidad de una bala |
El generador de
Van de Graaff Campo producido por un conductor esférico cargado. Potencial de la esfera conductora |
|||||||
Cuando se introduce un conductor cargado dentro de otro hueco y se ponen en contacto, toda la carga del primero pasa al segundo, cualquiera que sea la carga inicial del conductor hueco Teóricamente, el proceso se podría repetir muchas, aumentando la carga del conductor hueco indefinidamente. De hecho existe un límite debido a las dificultades de aislamiento de la carga. Cuando se eleva el potencial, el aire que le rodea se hace conductor y se empieza a perder carga. La diferencia entre la cubeta de Faraday y el generador de Van de Graaff, es que en la primera la carga se introduce de forma discreta, mientras que en el segundo se introduce en el conductor hueco de forma continua mediante una correa transportadora.
El generador de Van de GraaffVan de Graaff inventó el generador que lleva su nombre en 1931, con el propósito de producir una diferencia de potencial muy alta (del orden de 20 millones de volts) para acelerar partículas cargadas que se hacían chocar contra blancos fijos. Los resultados de las colisiones nos informan de las características de los núcleos del material que constituye el blanco. El generador del Van de Graaff es un generador de corriente constante, mientas que la batería es un generador de voltage constante, lo que cambia es la intensidad dependiendo que los aparatos que se conectan. El generador de Van de Graaff es muy simple, constan de un motor, dos poleas, una correa o cinta y dos peines o terminales hechos de finos hilos de cobre, y una esfera hueca donde se acumula la carga transportada por la cinta.
Funcionamiento del generador de Van de Graaff Hemos estudiado en otra página como se produce la electricidad estática, cuando se ponen en contacto dos materiales no conductores. Ahora explicaremos como adquiere la correa la carga que transporta hasta el terminan esférico.
La polea superior E actúa en sentido contrario a la inferior F. No puede estar cargada positivamente. Tendrá que tener una carga negativa o ser neutra (una polea cuya superficie es metálica). Existe la posibilidad de cambiar la polaridad de las cargas que transporta la correa cambiando los materiales de la polea inferior y de la correa. Si la correa está hecha de goma, y la polea inferior está hecha de nylon cubierto con una capa de plástico, en la polea se crea una carga negativa y en la goma positiva. La correa transporta hacia arriba la carga positiva. Esta carga como ya se ha explicado, pasa a la superficie del conductor hueco. Si se usa un material neutro en la polea superior E la goma no transporta cargas hacia abajo. Si se usa nylon en la polea superior la correa transporta carga negativa hacia abajo, esta carga viene del conductor hueco. De este modo, la correa carga positivamente el conductor hueco tanto en su movimiento ascendente como descendente. Las características del generador de Van de Graaff que disponemos en el laboratorio de laboratorio de Física de la E.U.I.T.I. de Eibar, son los siguientes:
Campo producido por un conductor esférico de cargado.El teorema de Gauss afirma que el flujo del campo eléctrico a través de una superficie cerrada es igual al cociente entre la carga en el interior de dicha superficie dividido entre e0. Consideremos una esfera hueca de radio R cargada con una carga Q. La aplicación del teorema de Gauss requiere los siguientes pasos: 1.-A partir de la simetría de la distribución de carga, determinar la dirección del campo eléctrico.
2.-Elegir una superficie cerrada apropiada para calcular el flujo
3. Determinar la carga que hay en el interior de la superficie cerrada
4.-Aplicar el teorema de Gauss y despejar el módulo del campo eléctrico En la figura, tenemos la representación del módulo del campo eléctrico en función de la distancia radial r. El campo en el exterior de la esfera conductora cargada con carga Q, tiene la misma expresión que el campo producido por una carga puntual Q situada en su centro.
Potencial de la esfera conductoraSe denomina potencial a la diferencia de potencial entre un punto P a una distancia r del centro de la esfera y el infinito. Como el campo en el interior de le esfera conductora es cero, el potencial es constante en todos sus puntos. Para hallar el potencial en la superficie de la esfera basta hallar el área sombreada (figura de la derecha) Se denomina capacidad de la esfera (más adelante definiremos con mayor precisión esta magnitud) al cociente entre la carga y su potencial, C=4p e0R.
Potencia del motor que mueve la correa
Para el generador de Van de Graaff de nuestro laboratorio que transporta en la correa una carga máxima 6 mC en cada segundo, desde un potencial 0 a un potencial máximo de 200 kV, la potencia será P=200 103·6 10-6=1.2 watt.
Fuerza electromotrizEl agua que abastece una ciudad baja espontáneamente desde un depósito situado en la cima de una colina. Ahora bien, para mantener el nivel del depósito, es necesario ir llenándolo a medida que el agua se consume. Un motor conectado a una bomba puede elevar el agua desde un río cercano hasta el depósito. En una pista de esquí, existen instalaciones que suben a los esquiadores por los remontes mecánicos hasta el alto de una colina, luego, los esquiadores bajan pendiente abajo. Los esquiadores son equivalentes a los portadores de carga, el remonte mecánico incrementa la energía potencial del esquiador. Luego, el esquiador baja deslizándose por la colina hasta la base del remonte. En un conductor los portadores de carga (positivos) se mueven espontáneamente desde un lugar en el que el potencial es más alto hacia otro lugar en el que el potencial es más bajo, es decir, en la dirección del campo eléctrico. Para mantener el estado estacionario es necesario proveer de un mecanismo que transporte los portadores de carga desde un potencial más bajo hasta un potencial más elevado. El generador de Van de Graaff es un ejemplo de este mecanismo. Las cargas positivas se mueven en dirección contraria al campo eléctrico, en el que el potencial aumenta, y las negativas en la misma dirección que el campo, en el que el potencial disminuye. La fuerza o la energía necesaria para este transporte de cargas lo realiza el motor que "bombea" las cargas. Se denomina fuerza electromotriz o fem Ve al trabajo por unidad de carga que realiza el dispositivo. Aunque la unidad de la fem es la misma que la de una diferencia de potencial, se trata de conceptos completamente diferentes. Una fem produce una diferencia de potencial pero surge de fenómenos físicos cuya naturaleza no es necesariamente eléctrica (en el generador de Van de Graaff es mecánica, en una pila es de naturaleza química, etc. ). Una fem es un trabajo por unidad de carga, este trabajo no lo realiza necesariamente una fuerza conservativa, mientras que la diferencia de potencial es el trabajo por unidad de carga realizado por una fuerza eléctrica que es conservativa.
ActividadesEn el applet se simula el generador de Van de Graaff, con la descripción dada en la sección anterior. Sin embargo, en el generador real la cinta transporta carga de forma continua. En la simulación, se transporta de forma discreta, sobre la cinta aparecen puntos rojos igualmente espaciados, cada unos de ellos representa una unidad de carga cuyo valor genera el programa interactivo de forma aleatoria. Al igual que en un generador real, el simulado pone un límite al campo máximo en la superficie de la esfera a partir del cual, el aire se ioniza y el generador no puede incrementar más la carga. Podemos aproximar el conductor hueco a una esfera conductora de radio R. Conociendo la carga acumulada Q se calcula el potencial de la esfera V. El campo producido por un esfera conductora de radio R en su superficie es El generador deja de acumular carga cuando el aire se vuelve conductor. La intensidad del campo eléctrico límite es de aproximadamente 3.0 106 V/m. Para una esfera de radio R podemos calcular la carga máxima que puede acumular y el máximo potencial que adquiere la esfera cargada. Introducir en el control de edición titulado Radio, el radio de la esfera en cm. A continuación, pulsar en el botón titulado Empieza. Supongamos una esfera de 40 cm de radio. Comprobar que
|