Trabajo y energía (el bucle)

prev.gif (1231 bytes)home.gif (1232 bytes)next.gif (1211 bytes)

Dinámica

Dinámica de la partícula
El rozamiento por
deslizamiento
Medida del coeficiente
dinámico
Medida del coeficiente
estático
Movimiento circular (I)
Movimiento circular (II)
Trabajo y energía
Conservación de la 
energía (cúpula)
El péndulo simple
El muelle elástico (I)
El muelle elástico (II)
marca.gif (847 bytes)Trabajo y energía
(el bucle)
Fundamentos físicos

java.gif (886 bytes)Actividades

 

Se propone un problema que permite al lector practicar con todos los aspectos relacionados con la dinámica de una partícula.

Se lanza una partícula mediante un dispositivo que consiste en un muelle comprimido, y desliza a lo largo de un plano horizontal. Luego, entra en un bucle y a continuación, si consigue describir el rizo, pasa a un plano inclinado.

Se supone que existe rozamiento entre el cuerpo y los planos horizontal e inclinado, pero no existe rozamiento en el bucle, por razón de simplicidad de cálculo.

 

Fundamentos físicos

En esta sección analizaremos cada una de las etapas en las que se puede dividir el bucle

  1. Plano horizontal A-B

bucle6.gif (680 bytes)

Si comprimimos el muelle una distancia x, y luego lo soltamos en la posición A, podemos calcular la velocidad del bloque en la entrada B del bucle, aplicando las ecuaciones del balance de energía.

En la posición A, el cuerpo solamente tiene energía potencial elástica

Siendo k la constante elástica del muelle, que se transforma en energía cinética en la posición B

En el trayecto AB se pierde energía debido al rozamiento

WAB=-Fr(x+0.7)=-mkmg(x+0.7)

Donde x+0.7 es la distancia entre los puntos A y B.

De la ecuación del balance energético WAB=EB-EA obtenemos vB

 

  • Bucle

El análisis del comportamiento de la partícula en el bucle es algo más complejo, y pueden ocurrir alguna de las siguientes situaciones

  1. Describe el bucle
bucle7.gif (1127 bytes) De la conservación de la energía (en el bucle no hay rozamiento) calculamos la velocidad del cuerpo en la parte superior del bucle C, conocida la velocidad en la parte inferior B.

Siendo R el radio del bucle

Ahora bien, si la velocidad del bloque en la posición C es inferior a un valor mínimo, no describirá el bucle.

De las ecuaciones de la dinámica del movimiento circular tenemos que

Siendo NC la fuerza normal en C, o fuerza que ejerce el raíl sobre el bloque en dicha posición. La velocidad mínima se obtiene cuando NC=0.

. Entonces

Podemos ahora pensar qué ocurre si no se alcanza la velocidad mínima vCmín

  1. Asciende a lo largo del bucle hasta que su velocidad es cero
bucle8.gif (1131 bytes) Aplicando el principio de conservación de la energía podemos calcular el ángulo q

 

  1. Si el ángulo es mayor que 90º o p /2.
    El ángulo q se calcula mediante la dinámica del movimiento circular y el principio de conservación de la energía.
bucle9.gif (1234 bytes)

    La partícula deja de tener contacto con el bucle en el instante en el que la fuerza normal es cero, N=0. Por lo que

    En dicho instante, la partícula se mueve bajo la única fuerza de su propio peso describiendo un movimiento curvilíneo bajo la aceleración constante de la gravedad o un tiro parabólico

    bucle10.gif (925 bytes)

    Tomando el centro del bucle como origen de coordenadas. La partícula vuelve a deslizar sobre el bucle cuando

    En las situaciones 1 y 2, el bloque regresa a la posición B con la misma velocidad con la que entró en el bucle, ya que como se ha mencionado el bucle no tiene rozamiento.

     

  • Plano inclinado

Si el bloque describe el bucle entra en el plano inclinado con una velocidad vD que se calcula mediante el principio de conservación de la energía

bucle11.gif (1520 bytes)

Una vez en el plano el móvil se frena debido a la componente del peso a lo largo del plano inclinado y a la fuerza de rozamiento. El cuerpo recorre una distancia x a lo largo del plano inclinado hasta que se para.

El balance energético o las ecuaciones de la dinámica del movimiento rectilíneo nos permiten calcular x.

bucle12.gif (1069 bytes)

Aplicando el balance energético WDE=EE-ED despejamos x.

 

Actividades

Cuando el bloque está en el origen, situamos el puntero del ratón sobre el bloque de color rojo, con el botón izquierdo del ratón pulsado, se arrastra el bloque y se comprime el muelle la distancia x deseada. A continuación, se suelta el botón izquierdo del ratón. El bloque empieza a moverse hacia el bucle.

Para volver a repetir la experiencia, se sitúa el bloque en el origen pulsando el botón titulado Inicio.

El botón titulado Pausa sirve para parar momentáneamente el movimiento, que se reanuda cuando se vuelve a pulsar el mismo botón titulado ahora Continua. Pulsando en el botón titulado Paso se observa la posición de los bloques en cada intervalo de tiempo, paso a paso.

Se puede cambiar el valor de la constante elástica k del muelle, en el control de edición titulado Constante del muelle. El coeficiente de rozamiento dinámico en el control de edición titulado Coeficiente de rozamiento, dentro de ciertos límites, y el radio del bucle en el control correspondiente dentro del límite 0.2 a 0.5 m.

El programa es flexible y nos permite describir la mayor parte de las situaciones que se describen en la dinámica:

  • La dinámica del movimiento rectilíneo uniformemente acelerado (plano inclinado)
  • La dinámica del movimiento circular (bucle)
  • Conservación de la energía (bucle)
  • Balance energético cuando actúan fuerzas no conservativas, la fuerza de rozamiento (plano inclinado y plano horizontal)

A la izquierda del applet podemos observar de forma cualitativa el balance energético. El círculo mayor es la energía total, y los colores indican las proporciones de cada clase de energía.

  • En color rojo, se muestra la energía perdida debido al rozamiento en los planos horizontal e inclinado
  • En color amarillo, se muestra la energía potencial (gravitatoria o elástica del muelle)
  • En color azul, la energía cinética

 

stokesApplet aparecerá en un explorador compatible con JDK 1.1.