Movimiento curvilíneo. Magnitudes cinemáticas

prev.gif (1231 bytes)home.gif (1232 bytes)next.gif (1211 bytes)

Cinemática

Movimiento curvilíneo
marca.gif (847 bytes)Magnitudes cinemáticas
Movimiento bajo la 
aceleración constante
de la gravedad
Composición de
movimientos
Apuntar un cañón para
dar en un blanco fijo
Bombardear un blanco
móvil desde un avión

Física en el juego
del baloncesto
Prescindiendo del tablero
Efecto del tablero.
Coeficiente de restitución
Dispersión del balón 
por el aro

Movimiento relativo de
rotación uniforme
Aceleración centrífuga
y de Coriolis
Componentes tangencial y normal de la aceleración
 

Movimiento curvilíneo

Supongamos que el movimiento curvilíneo tiene lugar en el plano XY, situamos un origen, y unos ejes, y representamos la trayectoria del móvil, es decir, el conjunto de puntos por los que pasa el móvil.

Las magnitudes que describen un movimiento curvilíneo son:

 

Vector posición r en un instante t.

Cine_10.gif (2821 bytes) Como la posición del móvil cambia con el tiempo. En el instante t el móvil se encuentra en el punto P, o en otras palabras, su vector posición es r y en el instante t' se encuentra en el punto P', su posición viene dada por el vector r'.

Diremos que el móvil se ha desplazado Dr=r’-r en el intervalo de tiempo Dt=t'-t. Dicho vector tiene la dirección de la secante que une los puntos P y P'.

 

Vector velocidad

Cine_11.gif (3252 bytes) El vector velocidad media, se define como el cociente entre el vector desplazamiento Dr entre el tiempo que ha empleado en desplazarse Dt.

El vector velocidad media tiene la misma dirección que el vector desplazamiento, la secante que une los puntos P y P' de la figura.

Cine_12.gif (2647 bytes) El vector velocidad en un instante, es el límite del vector velocidad media cuando el intervalo de tiempo tiende a cero.

Como podemos ver en la figura, a medida que hacemos tender el intervalo de tiempo a cero, la dirección del vector velocidad media, la recta secante que une sucesivamente los puntos P, con los puntos P1, P2....., tiende hacia la tangente a la trayectoria en el punto P.

En el instante t, el móvil se encuentra en P y tiene una velocidad v cuya dirección es tangente a la trayectoria en dicho punto.

 

Vector aceleración

Cine_13.gif (3324 bytes) En el instante t el móvil se encuentra en P y tiene una velocidad v cuya dirección es tangente a la trayectoria en dicho punto.

En el instante t' el móvil se encuentra en el punto P' y tiene una velocidad v'.

El móvil ha cambiado, en general, su velocidad tanto en módulo como en dirección, en la cantidad dada por el vector diferencia Dv=v’-v.

Se define la aceleración media como el cociente entre el vector cambio de velocidad   y el intervalo de tiempo Dt=t'-t, en el que tiene lugar dicho cambio.

Y la aceleración a en un instante

Resumiendo, las ecuaciones del movimiento curvilíneo en el plano XY son

La primera fila corresponde, a las ecuaciones de un movimiento rectilíneo a lo largo del eje X, la segunda fila corresponde, a las ecuaciones de un movimiento rectilíneo a lo largo del eje Y, y lo mismo podemos decir respecto del eje Z.

Por tanto, podemos considerar un movimiento curvilíneo como la composición de movimientos rectilíneos a lo largo de los ejes coordenados.

 

Componentes tangencial y normal de la aceleración

Las componentes rectangulares de la aceleración no tienen significado físico, pero si lo tienen las componentes de la aceleración en un nuevo sistema de referencia formado por la tangente a la trayectoria y la normal a la misma.

Hallar las componentes tangencial y normal de la aceleración en un determinado instante es un problema de geometría, tal como se ve en la figura.

componentes.gif (2169 bytes)

  • Se dibujan los ejes horizontal X y vertical Y.
  • Se calculan las componentes rectangulares de la velocidad y de la aceleración en dicho instante. Se representan los vectores velocidad y aceleración en dicho sistema de referencia.
  • Se dibujan los nuevos ejes, la dirección tangencial es la misma que la dirección de la velocidad, la dirección normal es perpendicular a la dirección tangencial.
  • Con la regla y el cartabón se proyecta el vector aceleración sobre la dirección tangencial y sobre la dirección normal.
  • Se determina el ángulo q entre el vector velocidad y el vector aceleración, y se calcula el valor numérico de dichas componentes: at=a cosq  an=a senq

Podemos hallar la aceleración tangencial en cualquier instante, a partir del producto escalar del vector aceleración a y el vector velocidad v.

La aceleración normal, se obtiene a partir del módulo de la aceleración a y de la aceleración tangencial at

La aceleración tangencial se obtiene también derivando el módulo de la velocidad con respecto del tiempo

Como la velocidad es un vector, y un vector tiene módulo y dirección. Existirá aceleración siempre que cambie con el tiempo bien el módulo de la velocidad, la dirección de la velocidad o ambas cosas a la vez.

  • Si solamente cambia el módulo de la velocidad con el tiempo, como en un movimiento rectilíneo, tenemos únicamente aceleración tangencial.
  • Si solamente cambia la dirección de la velocidad con el tiempo, pero su módulo permanece constante como en un movimiento circular uniforme, tenemos únicamente aceleración normal.
  • Si cambia el módulo y la dirección de la velocidad con el tiempo, como en un tiro parabólico, tendremos aceleración tangencial y aceleración normal..

Obtuvimos la expresión de la aceleración normal en el estudio del movimiento circular.