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Abstract

C4 plants evolved independently more than 60 times from C3 ancestors. C4 photosynthesis is a complex trait and its 
evolution from the ancestral C3 photosynthetic pathway involved the modification of the leaf anatomy and the leaf 
physiology accompanied by changes in the expression of thousands of genes. Under high temperature, high light, and 
the current CO2 concentration in the atmosphere, the C4 pathway is more efficient than C3 photosynthesis because 
it increases the CO2 concentration around the major CO2 fixating enzyme Rubisco. The oxygenase reaction and, 
accordingly, photorespiration are largely suppressed. In the present review we describe a scenario for C4 evolution 
that not only includes the avoidance of photorespiration as the major driving force for C4 evolution but also highlights 
the relevance of changes in the expression of photorespiratory genes in inducing and establishing important phases 
on the path from C3 to C4.
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Introduction

The vast majority of organic carbon on earth is fixed by the 
enzyme ribulose-1,5-bisphosphate carboxylase/oxygenase 
(Rubisco). The enzyme functions as an oxygenase as well as a 
carboxylase using both CO2 and O2 depending on their con-
centrations, with carboxylation generating 3-phosphoglyc-
eric acid (3-PGA) and oxygenation additionally generating 
2-phosphoglycolate (2-PG). Photorespiration, the pathway 
used to regenerate 2-PG, takes place in the chloroplasts, per-
oxisomes, and mitochondria. It consumes ATP and NADPH 
and leads to a net loss of CO2 for the plant. This reduces the 
efficiency of carbon fixation in plants by up to 30% under 
hot and dry conditions (Bauwe et al., 2010; Raines, 2011). C4 
photosynthesis acts as a CO2 pump and inhibits the oxygena-
tion reaction by effectively increasing the intracellular CO2 
to O2 ratio at the site of Rubisco. C4 photosynthesis usually 

involves two different cell types, the mesophyll and the bundle 
sheath cells (Fig.  1A), whereas only few species are known 
that realize a C4 cycle within a single cell (Edwards et  al., 
2004).

C4 plants are characterized by high rates of photosynthe-
sis and efficient use of water and nitrogen resources. Owing 
to their CO2 concentration mechanism they can reduce their 
stomatal conductance and save water. Because Rubisco works 
more efficiently under higher CO2 concentrations, C4 plants 
also need less Rubisco, the most abundant enzyme in plant 
leaves, leading to nitrogen savings. The C4 cycle itself  involves 
the initial fixation of CO2 in the form of bicarbonate in the 
mesophyll cells by phosphoenolpyruvate carboxylase (PEPC), 
resulting in the four-carbon compound oxaloacetate that is 
converted to the transport metabolites malate or aspartate. 
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These are transferred to the bundle sheath cells where CO2 
is set free by a decarboxylase, either the NADP-dependent 
malic enzyme, the NAD-dependent malic enzyme, phospho-
enolpyruvate carboxykinase, or a combination of two of 
these enzymes (Furbank, 2011; Pick et al., 2011; Wang et al., 
2014). The resulting pyruvate is transferred back to the meso-
phyll where phosphoenolpyruvate is regenerated by pyruvate 
orthophosphate dikinase. The CO2 released in the bundle 
sheath is re-fixed by Rubisco, which is exclusively located in 
the bundle sheath cells in C4 plants (Fig. 1B) (Hatch, 1987).

C4 photosynthesis evolved independently more than 60 
times within the angiosperms (Sage et al., 2011). This makes 
C4 photosynthesis one of the most remarkable cases of con-
vergent evolution of a complex trait (Westhoff and Gowik, 
2004). It requires two compartments, one for initial carbon 
fixation by PEPC, most frequently realized as a mesophyll 
cell, and one for carbon fixation by Rubisco, most frequently 
realized as the bundle sheath cell in an arrangement called the 
Kranz anatomy, where the bundle sheath cells surround the 
vascular bundles and are themselves surrounded by the meso-
phyll cells (Fig.  1A) (Hatch, 1987). The different cell types 
are adapted to the trait. Bundle sheath cells are enlarged and 
photosynthetically competent, surrounded by a less perme-
able cell wall that may or may not be suberized (Botha, 1992; 
Evert et  al., 1996). They are connected to the mesophyll 
by many plasmodesmata (Evert et  al., 1977; Botha, 1992; 
Sowinski et  al., 2008; Majeran et  al., 2010). Leaves of C4 

plants are often thinner than those of C3 plants and exhibit 
a higher vein density to ensure that every mesophyll cell is in 
direct contact with a bundle sheath cell (Fig.  1A) (Dengler 
and Nelson, 1999). Both mesophyll and bundle sheath cells 
undergo gene expression changes for adaptation (Bräutigam 
et al., 2011; Bräutigam et al., 2014; Gowik et al., 2011).

The complex trait of C4 photosynthesis requires the simul-
taneous presence of its anatomical and biochemical sub-
traits. Zea mays (maize) husk leaves have increased vein 
spacing and lack the anatomical arrangement of Kranz anat-
omy. In consequence, only an incomplete version of the trait 
with lower carbon fixation yields develops (Pengelly et  al., 
2011). Likewise, if  any of the C4 cycle enzymes are drasti-
cally reduced by mutation or molecular intervention, the 
pathway is not functional although the anatomical and other 
biochemical traits are present (Dever et al., 1995; Dever et al., 
1997; Pengelly et al., 2012). If  only parts of the trait, that is 
the high expression of certain enzymes, are reconstituted in 
C3 plants, the outcome is frequently detrimental to the plant 
(Fahnenstich et al., 2007; Hausler et al., 2001; Hausler et al., 
2002). This complexity, the requirement for all things to be 
present simultaneously, makes it difficult to envision how 
evolution may have proceeded. A step-wise model of C4 evo-
lution was proposed (Monson, 1999) and greatly refined in 
the following years (Sage, 2004; Sage et al., 2012). Modelling 
of C4 evolution with Bayesian approaches (Williams et  al., 
2013) or with biochemical modelling (Heckmann et al., 2013) 

Fig. 1 C4 photosynthesis and the photorespiratory pump. (A) Cross section from a leaf of Megathyrsus maximus. A typical C4 leaf with bundle sheath 
and mesophyll cells surrounding the veins in layers. Chlorophyll fluorescence (red) was visualized by exciting fluorescence with 460–500 nm and 
monitoring the emission above 593 nm. The autofluorescence of lignified cell walls (blue) was excited at 335–383 nm and monitored at 420–470 nm. 
(B) Schematic representation of the C4 pathway. (C) Schematic representation of the photorespiratory pump. (D) Mechanistic interaction between the 
photorespiratory pump and the C4 pathway. In (B), (C), and (D), enzyme localizations are colour coded: green chloroplast, orange peroxisomes, blue 
mitochondria. Abbreviations: Ala, alanine; Asp, aspartate; AT, aminotransferase; CA, carbonic anhydrase; GDC, glycine decarboxylase; Glc, glycerate; 
Gln, glutamine; Glo, glycolate; Glu, glutamate; Glx, glyoxylate; Gly, glycine; GOX, glycolate oxidase; HPR, Hyp reductase; Hyp, hydroxypyruvate; 
Mal, malate; MDH, malate dehydrogenase; NADP-ME, NADP-dependent malic enzyme; OAA, oxaloacetate; PEP, phosphoenolpyruvate; PEPC, 
phosphoenolpyruvate carboxylase; PGP, phosphoglycolate phosphatase; PPDK, pyruvate orthophosphate dikinase; Pyr, pyruvate; RuBP, ribulose-1,5-
bisphosphate; Ser, serine; SHM, serine hydroxymethyltransferase; 2-PG, 2-phosphoglycolate; 3-PGA, 3-phospoglycerate.
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confirmed the succession of steps proposed earlier, but indi-
cated that the evolutionary path is smooth (Heckmann et al., 
2013).

Photorespiration is strongly associated with the evolu-
tion of the C4 photosynthetic pathway. On the one hand, the 
reduction of photorespiration was one of the driving forces 
behind C4 evolution. On the other hand, all of the models of 
C4 evolution (Monson, 1999; Bauwe, 2011; Sage et al., 2012; 
Heckmann et al., 2013; Williams et al., 2013) predict that the 
establishment of a photorespiratory CO2 pump that relocates 
the photorespiratory CO2 release to the bundle sheath cells 
is an important intermediate step towards the C4 cycle. This 
photorespiratory CO2 pump is also termed C2 photosynthesis 
because the two-carbon compound glycine serves as a CO2 
transport metabolite (Fig.  1C; briefly, photorespiration is 
partitioned between two cell types with decarboxylation of 
glycine occurring mainly in one type, thereby enriching CO2 
at the site of this decarboxylation). Plants that use the pho-
torespiratory pump (or C2 photosynthesis) are often termed 
C3–C4 intermediates owing to their physiological properties.

This review considers selective pressures, deduced from the 
properties of recent C3–C4 intermediate and C4 species but 
not from the current environments of these species (Edwards 
et al., 2010); the changes at the molecular level; and the con-
sequences of different phases of evolution in C3–C4 interme-
diate and C4 species as we observe them today.

Setting the stage—increased leaf venation creates a 
carbon-needy plant

The vast majority of C4 species exhibit Kranz anatomy in 
their leaves, that is, they have high vein density with only two 
mesophyll cells spacing two veins and their bundle sheaths 
(Fig. 1A). The step-wise model considers changes in venation 

patterns as one of the early steps (Sage, 2004), which was con-
firmed in a Bayesian model (Williams et al., 2013) (Fig. 2).

Venation itself  is a variable trait both within a species and 
between species (Lundgren et al., 2014). It is under high selec-
tive pressure (Roth-Nebelsick et al., 2001) because the vena-
tion pattern of the leaf in part determines the resistance to 
water flow through the plant (Sack and Holbrook, 2006). On 
average the venation contributes about a third to total water 
resistance, but can reach up to 98% (summarized in Sack and 
Holbrook, 2006). The water potential is of key importance 
because it determines stomatal opening via the water status of 
the cells, which in turn determines photosynthetic rates (Sack 
and Holbrook, 2006; Brodribb et al., 2007). Hence the vena-
tion patterns are indirectly coupled to photosynthetic rates. 
Water resistance is determined more strongly by venation 
pattern in species that establish under high light conditions 
(~70%) than in species that establish in low light conditions 
(52%; Sack et al., 2005). Based on these results, it is expected 
that species with high venation density establish in high light, 
high air temperature, and low air humidity conditions. At the 
same time, enough soil water must be available to secure the 
benefits of increased venation (Fig. 2). Given that more veins 
with their reinforced walls require a higher investment, pho-
tosynthetic gains need to outstrip the investment to realize a 
competitive advantage. Higher venation density also lowers 
the leaf water potential at which leaf water conductance is 
halved, indicating higher tolerance to (temporary) drought 
(Nardini et al., 2012). Under these conditions, having more 
veins might be beneficial to counteract the loss of water con-
ductivity due to xylem collapse or the effect of cavitation 
(Griffiths et al., 2013). Griffiths et al. (2013) also proposed 
that there might be an evolutionary advantage to enlarged 
bundle sheath cells because they could acquire functions in 
cavitation repair and maintaining hydraulic conductance. 

Fig. 2 The trajectory towards C4. Abbreviations: C, carbon; GDC, glycine decarboxylase; IVD, interveinal distance; M, mesophyll; N, nitrogen; PEPC, 
phosphoenolpyruvate carboxylase; PS, photosynthesis; RubisCO, ribulose-1,5-bisphosphate carboxylase/oxygenase.
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Finally, higher venation density may reduce loss through 
grazing by altering palatability. Based on these analyses, an 
alternative environment in which species with high venation 
patterns establish may be a high light, high temperature envi-
ronment with generally high, but fluctuating and at times lim-
ited, water availability. Competing plants will wilt in such an 
environment and thus no longer compete. Modelling analyses 
may show in future which of the two scenarios is true under a 
given set of conditions. If  venation has evolved independently 
from C4 photosynthesis with its own set of selective pressures, 
one could expect that tight venation must have evolved in lin-
eages without C4 species. And indeed such C3 species exist, as 
shown by Christin et al. (2013).

There are two consequences that follow from a tighter 
venation pattern in otherwise similar leaves: (i) space for pho-
tosynthetically active mesophyll is reduced in favour of vein 
tissue (Fig. 1A), and (ii) veins with reinforced cell walls result 
in a higher C:N ratio because the walls require virtually only 
C to be built (Niinemets et al., 2007; Sack and Scoffoni, 2013). 
Both of these consequences lead to the evolutionary pressure 
to increase photosynthetic capacity. Not only is leaf size con-
strained by a variety of factors (Niinemets et al., 2007; Sack 
et al., 2012), simply increasing leaf size to add more meso-
phyll cells is likely ecologically unfavourable (Niinemets et al., 
2007). To achieve a higher number of photosynthesizing cells 
on the same leaf lamina, the bundle sheath cells were likely 
under evolutionary pressure to enhance their competence to 
photosynthesize, leading to enlarged bundle sheath cells with 
an increased number of chloroplasts. Because photorespira-
tion occurs in all cells containing Rubisco, this consequently 
also requires an increase in the number of mitochondria. 
With regard to the complex trait of C4 photosynthesis, at this 
point during evolution the tight venation was in place with a 
high likelihood of photosynthetically competent, organelle-
containing bundle sheath cells. This type of anatomy is also 
termed as proto Kranz anatomy (Sage et al., 2012). None of 
the other trait components were likely in place at this point. 
In fact, the poorly permeable walls of bundle sheath cells 
typical for C4 species would have been counterproductive 
for active photosynthesis in the cell type. Increased venation, 
although not necessarily to the point of Kranz anatomy, was 
likely a necessary but insufficient condition for enabling pro-
gress towards C4. C4 photosynthesis, as well as the photores-
piratory pump, require additional anatomical features, such 
as close contact between mesophyll and bundle sheath cells 
and large enough bundle sheath cells to house enough chlo-
roplasts for the Calvin–Benson–Bassham cycle (Lundgren 
et al., 2014).

The molecular mechanisms that lead to the changes in 
venation density are largely unknown. Initiation of veins is 
governed by directed auxin transport followed by the tem-
poral succession of marker gene expression for vein devel-
opment (Scarpella and Meijer, 2004; Scheres and Xu, 2006). 
Once mesophyll cells differentiate, vein formation is termi-
nated (Scarpella et al., 2004), prompting the hypothesis that 
delayed mesophyll differentiation enables more vein for-
mation in dicots. Indeed, Kulahoglu et  al. (2014) observed 
that the differentiation of mesophyll cells is delayed in the 

leaves of the C4 species Gynandropsis gynandra compared to 
that of the closely related C3 species Tarenaya hassleriana. 
The molecular identity of factors controlling these changes 
remains unknown to date. Once vein identity is established, 
cell identities in the leaf need to be established. Transcriptome 
analysis of developing maize foliar and husk leaves as well 
as the examination of maize mutants implicate a role of the 
SCARECROW/SHORTROOT regulatory network in estab-
lishing Kranz anatomy (Slewinski et  al., 2012; Slewinski, 
2013; Wang et  al., 2013). A  model describing how the 
SCARECROW/SHORTROOT pathway might be involved 
in Kranz patterning and the specification of bundle sheath 
and C4 mesophyll cells is detailed in Fouracre et al. (2014).

The importance of anatomical pre-conditioning for the evo-
lution of C4 and likely also the evolution of the photorespira-
tory pump is shown in a study by Christin et al. (2013). Leaf 
anatomy analyses of 157 grass species from the PACMAD 
clade (including the subfamilies Aristidoideae, Arundinoideae, 
Chloridoideae, Danthonioideae, Micrairoideae, and Pani-
coideae and exhibiting 22–24 independent C4 origins) and 
the BEP clade (including the subfamilies Bambusoideae, 
Ehrhartoideae, and Pooideae and containing zero C4 ori-
gins) led to the conclusion that the possibility of C4 evolution 
strongly increases when the proportion of bundle sheath tissue 
exceeds 15%. This was achieved by increased bundle sheath 
cell size and decreased vein spacing.

The result of increased venation is plants that are highly 
competitive in high temperature, low air humidity, and high 
soil moisture environments. However, they are critically 
dependent on high photosynthetic rates to maintain their 
high investment in carbon-intense vein architecture (Fig. 2).

The photorespiratory CO2 pump as the initial solution 
to limited soil water availability

Plant populations with high investment into the venation 
system to maintain high photosynthetic rates may encoun-
ter limited water availability. This encounter may be temporal 
with changing climate over time within their current niche or 
spatial at the edges of the niche. A  solution to limited soil 
water availability and thus limited carbon may be the rever-
sal to lower density venation to save carbon. Alternatively, 
carbon concentration mechanisms could be the answer to 
maintaining the present venation density, assuming CO2 
is the limiting resource for growth and reproduction. Plant 
growth is limited by the scarcest resource according to the 
Liebig law of the minimum as summarized in van der Ploeg 
et al. (1999). In most niches, plants are not limited by car-
bon assimilation, but by nitrogen or phosphorus availability 
in the soil even under today’s low CO2 concentrations (Agren 
et al., 2012; Körner, 2015). Although C4 photosynthesis itself  
leads to high nitrogen use efficiency (Sage, 2004), the interme-
diate stages by no means have higher nitrogen use efficiency 
(Monson, 1989; Pinto et  al., 2011; Vogan and Sage, 2011). 
Evolution of photosynthetic types that increase the carbon 
assimilation efficiency must have occurred under conditions 
in which carbon and not nitrogen or phosphorus (or indeed 
any other nutrient) was the limiting factor. Although most 
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C4 origins post-date the atmospheric decline of CO2 30 mil-
lion years ago, some by over 20 million years, limited evidence 
indicates C4 evolution prior to the decline (Prasad et al., 2011; 
Christin and Osborne, 2014; Christin et al., 2014). Both the 
continued evolution of the photorespiratory pump and C4 
photosynthesis as well the evolution prior to the CO2 decline 
indicate that local changes of the environmental conditions, 
like a local decline in water availability, are critical for carbon 
limitation and hence for the evolution of the C4 trait (Fig. 2).

The photorespiratory pump is one possibility for plants to 
deal with limited CO2 because it allows more efficient carbon 
assimilation (Ku et al., 1983; Monson et al., 1984). While the 
existence of so called C3–C4 intermediate plant species was 
known for a long time, the detailed biochemical mechanisms 
underlying this type of photosynthesis remained unclear 
(Edwards and Ku, 1987). Most C3–C4 intermediates are char-
acterized by a leaf anatomy that is intermediate to C3 and 
C4 species, with large, organelle-rich bundle sheath cells and 
close vein spacing (Edwards and Ku, 1987). Their apparent 
rate of photorespiration and the CO2 compensation point is 
between the values for C3 and C4 plants (Edwards and Ku, 
1987). The analysis of the C3–C4 intermediate Moricandia 
arvensis demonstrated that these intermediate physiologi-
cal parameters depend on the existence of a photorespira-
tory CO2 pump (Rawsthorne et al., 1988a, b) and confirmed 
earlier assumptions (Edwards and Ku, 1987; Monson et al., 
1984). A photorespiratory CO2 pump was also found to be 
active in other C3–C4 intermediate species from the gen-
era Flaveria, Panicum, Mollugo, Alternanthera, and others 
(Kennedy and Laetsch, 1974; Rajendrudu et al., 1986; Hylton 
et al., 1988; Morgan et al., 1993; Sage et al., 2012). The pump 
essentially requires mesophyll with limited glycine decarboxy-
lation activity, which forces photorespiratory glycine to the 
bundle sheath for decarboxylation and high photosynthetic 
rates to achieve carbon concentration in the bundle sheath 
(Fig.  1C) (Rawsthorne et  al., 1988a). The increased photo-
synthetic rate in plants with dense venation is a pre-condition 
for the photorespiratory pump. In M. arvensis the pump is 
realized by restricting the P subunit of the glycine decarboxy-
lase complex (GDC) to the bundle sheath cells (Rawsthorne 
et al., 1988a, b). In other species, the P subunit as well as other 
GDC subunits and serine hydroxymethyltransferase, which is 
involved in glycine decarboxylation, are similarly absent in 
the mesophyll cells (Morgan et al., 1993). It was shown later 
that the cell-specific activity of the GDC is regulated on the 
transcriptional level (Engelmann et al., 2008; Schulze et al., 
2013).

By moving the decarboxylation step to the mitochondria 
of the bundle sheath, the photorespiratory CO2 release is 
exclusively localized in one cell type, increasing the CO2 con-
centration in that cell type up to 3-fold (Keerberg et al., 2014). 
Rubisco can work much more efficiently under these CO2-
enriched conditions and the unfavourable oxygenation reac-
tion is largely suppressed (Bauwe and Kolukisaoglu, 2003; 
Rawsthorne, 1992; von Caemmerer, 1989). In addition, by 
restricting GDC to the bundle sheath, photorespiratory CO2 
is released in the interior compartment of the leaf, increas-
ing the chance of refixation before it is lost from the plant. 

This qualitative model of the photorespiratory pump was 
largely confirmed by physiological data and the quantitative 
model by von Caemmerer (1989). Using the von Caemmerer/
Farquhar model of photosynthesis (Farquhar et al., 1980; von 
Caemmerer, 2000) and starting with a species with tight vena-
tion and assuming unlimited light availability, Heckmann 
et  al. (2013) demonstrated that the photorespiratory pump 
provides a small fitness gain in terms of higher carbon assimi-
lation rates, and predicted it to be the first change occurring 
in the evolution of C4 (Fig. 2).

The evolutionary history of how the photorespiratory 
pump was established in the genus Flaveria was recently 
investigated in molecular detail (Schulze et al., 2013). A gene 
duplication released the glycine decarboxylase P protein from 
adaptive conflict. Both copies were sub-functionalized by 
duplication, degeneration, and complementation with regard 
to the expression domains (Monson, 1999). One GDC-P 
copy was found to be bundle sheath–specific whereas another 
GDC-P gene was expressed in all photosynthetic leaf cells in 
the C3 Flaveria species analysed (Schulze et al., 2013). At this 
point, the genus was poised to evolve the photorespiratory 
pump. Gradual loss of the whole leaf–expressed copy left 
only the bundle sheath–specific copy. Under the assumption 
that the transport capacity of the mesophyll–bundle sheath 
cell interface was sufficient, enrichment of CO2 at the site of 
the bundle sheath occurred.

The detailed analyses in Flaveria showed that GDC-P was 
not abruptly lost from the mesophyll cells but that GDC-P 
mesophyll expression is reduced gradually in C3–C4 inter-
mediates and becomes zero only in the true C4 Flaveria spe-
cies, including the pseudogenization of the GDC-P copy 
expressed everywhere (Schulze et al., 2013). It is plausible that 
the photorespiratory CO2 pump was not established abruptly, 
because the capacities to decarboxylate large amounts of 
glycine efficiently and to recapture the correspondingly large 
amounts of photorespiratory CO2 were likely not present in 
the bundle sheaths at this stage. Also, the bundle sheath cells 
of recent proto Kranz species are still relatively poor in chlo-
roplasts and mitochondria (Muhaidat et al., 2011; Sage et al., 
2013). The abrupt loss of all glycine decarboxylation activity 
in the mesophyll would most probably have been fatal.

The gradual reduction of glycine decarboxylation in 
the mesophyll cells implies a series of self-reinforcing steps 
(Bauwe, 2011; Muhaidat et al., 2011; Sage et al., 2012). By 
creating a higher CO2 concentration around Rubisco in the 
bundle sheath, it would become more engaged in CO2 fixation 
than the mesophyll enzyme. This creates a selection pressure 
to enhance the number of bundle sheath chloroplasts and 
the amount of Rubisco in the bundle sheath. More glycine 
decarboxylation activity could be shifted to the bundle sheath 
cells and the number of bundle sheath mitochondria would 
increase and lead to further CO2 enrichment. Bundle sheath 
Rubisco would operate under even more favourable condi-
tions, and so on.

Although models established the photorespiratory pump as 
the first change in biochemistry (Heckmann et al., 2013) and 
molecular analysis demonstrated the succession of events at 
the gene level (Schulze et al., 2013), the question whether the 
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photorespiratory pump might be a dead end or an intermedi-
ate inevitably leading to C4 remained. Models predicted the 
evolution of the C4 cycle as the next step (Heckmann et al., 
2013; Williams et al., 2013) but did not provide explanations 
about the mechanism.

From the photorespiratory pump to C4 photosynthesis

The photorespiratory pump does not only enrich CO2 in the 
bundle sheath cells. Two molecules of glycine are moved into 
the bundle sheath and only one molecule of serine is moved 
back in the most straightforward version of the pathway. 
Hence, not only the CO2 but also the ammonia accumulates in 
the bundle sheath (Fig. 1C). This leads to a massive nitrogen 
imbalance between mesophyll and bundle sheath cells when 
the photorespiratory pump runs with high activity. Ammonia 
is toxic and known to effectively uncouple electrochemical 
gradients (Krogmann et al., 1959), thus it has to be refixed 
in the bundle sheath cells and shuttled back to the mesophyll 
in the form of amino acids. This ammonia problem was rec-
ognized at the time the scheme was proposed (Rawsthorne 
et al., 1988b).

The question of how the C4 pathway evolved from the pho-
torespiratory CO2 pump was linked to the question about the 
fate of the ammonia and analysed by a combination of com-
puter modelling and transcriptome analysis of C3, C4, and 
C3–C4 intermediate species of the genus Flaveria (Mallmann 
et  al., 2014). Using a flux balance analysis model modified 
from C4GEM (Dal’Molin et  al., 2010) the possible return 
routes for the ammonia were determined. Biomass neutral 
possibilities with increasing metabolic complexity were (i) 
a glutamate 2-oxoglutarate shuttle, (ii) an alanine pyruvate 
shuttle, and (iii) an aspartate malate shuttle. The second and 
third possibility contained reactions required for C4 photo-
synthesis. Enzyme activity measurements and RNA-seq data 
had already shown low activity or expression of the key C4 
gene for PEPC in C3 plants (Bräutigam et al., 2011; Gowik 
et al., 2011; Bräutigam et al., 2014;) and labelled C14 incorpo-
ration into C4 acids in C3–C4 intermediate species and even C3 
species had been demonstrated (Monson et al., 1984). Hence, 
the model was queried for the optimal result if  PEPC was 
active. PEPC activity immediately leads to a C4 cycle that 
interacts with the photorespiratory pump at the point of the 
ammonia return (Fig. 1D) (Mallmann et al., 2014). Ammonia 
is shuttled to the mesophyll cells in the form of alanine, while 
malate is transferred to the bundle sheath in return, where 
it is decarboxylated and the resulting pyruvate used for ala-
nine synthesis. Assuming carbon limitation of growth, fitness 
increases linearly with C4 cycle activity. This is due to the fact 
that the C4 cycle acts in concert with the photorespiratory 
pump in enriching CO2 in the bundle sheath while re-shut-
tling the ammonia to the mesophyll. Consequently, according 
to the model, an increase in C4 cycle activity directly trans-
lates into further biomass gains (Fig. 2).

In this model the evolution of the C4 trait is additive 
instead of complex, especially with respect to the biochem-
istry. The enzyme or transporter that limits the C4 cycle will 
come under high selective pressure because its increase will 

immediately translate into biomass and hence fitness gain. 
When it increases in expression, selective pressure will imme-
diately shift to the next enzyme or transporter (or cellular 
interface) that is limiting (Mallmann et al., 2014).

The increase in C4 cycle activity is likely driven by the selec-
tive pressure on the system, that is, evolution towards full C4 
species proceeds only if  carbon remains limiting. This evo-
lution likely included changes to the bundle sheath walls to 
increase CO2 entrapment and O2 exclusion, and changes to 
exit pathways for C4 cycle metabolites, in addition to changes 
in gene expression for the C4 cycle genes. Hence once a low-
activity C4 cycle takes over to replenish the ammonia imbal-
ance resulting from the photorespiratory CO2 pump, the 
evolution of true C4 species becomes inevitable as long as the 
selective pressure—limiting carbon—persists. This model of 
C4 evolution shifts the question of why some branches of the 
phylogenetic tree of plants have never evolved C4 photosyn-
thesis to the question of why these branches never evolved the 
photorespiratory pump.

Fixation of the C4 photosynthetic trait

The sequence of steps establishing a highly active C4 cycle 
in plants with a photorespiratory pump was confirmed by 
the analysis of C3–C4 intermediate species from the genus 
Flaveria (Heckmann et  al., 2013; Mallmann et  al., 2014). 
The sequence, and the seeming inevitability, of C4 evolution 
once the pump is established provokes two questions: Can the 
C4 trait revert and why are there intermediate stages today 
despite millions of years of evolution.

We posit that complete loss of Rubisco in the mesophyll and 
the subsequent reduction in photorespiratory gene expres-
sion fix the C4 trait. Rubisco activity in the mesophyll may be 
lost gradually as PEPC activity increases but cannot be lost 
completely unless the C4 cycle as a whole is adapted to carry 
the full load. The model of Heckmann et al. (2013) predicts 
the gradual loss of Rubisco as C4 cycle activity increases. The 
photorespiratory pump will continue running until Rubisco in 
the mesophyll is completely shut off. This can be observed in 
the C4-like species Flaveria brownii, which shows a reduction 
of mesophyll Rubisco together with other Calvin–Benson 
cycle and some photorespiratory genes, with the exception 
of the enzymes directly involved in glycine decarboxylation 
(Bauwe, 1984; Holaday et al., 1988; Mallmann et al., 2014). 
As long as mesophyll Rubisco is active, high photorespiratory 
gene expression is required (Fig. 2).

Only after the complete loss of mesophyll Rubisco activ-
ity can the final adjustment phase of C4 evolution proceed. 
The loss of mesophyll Rubisco activity relaxes the selec-
tive pressure for high expression of photorespiratory genes 
because high activity and therefore high expression is no 
longer required. Because there is no more Rubisco in the 
mesophyll, expression of most photorespiratory genes in 
this tissue becomes obsolete and will be lost—most likely by 
drift—as can be observed in the highly optimized grass spe-
cies maize, Sorghum bicolor, or Setaria italica (Li et al., 2010; 
Majeran et al., 2010; John et al., 2014; Döring et al., 2016). In 
consequence, high expression of photorespiratory genes can 

 at K
T

H
 R

oyal Institute of T
echnology on February 27, 2016

http://jxb.oxfordjournals.org/
D

ow
nloaded from

 

http://jxb.oxfordjournals.org/


Photorespiration connects C3 and C4 photosynthesis | Page 7 of 10

no longer be detected in C4 species (Bräutigam et al., 2011; 
Gowik et al., 2011; Bräutigam et al., 2014). Artificial reduc-
tion of C4 cycle activity to the point where it can no longer 
maintain sufficient CO2 enrichment by mutation (Dever et al., 
1997) or by transgenic approaches (Pengelly et  al., 2012) 
causes phenotypes reminiscent of photorespiratory mutants 
and, consequentially, can be alleviated by growth in elevated 
CO2 concentrations. Evolution has manoeuvred C4 plants 
into a corner: escape requires simultaneous gain of Rubisco 
expression in the mesophyll and elevated expression of the 
photorespiratory genes, and is thus unlikely (Fig. 2). Because 
the trait is fixed, carbon limitation is no longer required to 
maintain it, hence C4 species may now be limited by nutrients 
other than carbon.

Total Rubisco expression is also drastically reduced in C4 
species (Bräutigam et al., 2011; Gowik et al., 2011; Bräutigam 
et  al., 2014), as is Rubisco protein content (Bauwe, 1984; 
Wessinger et al., 1989) along with the Calvin–Benson cycle 
enzymes, excluding those required for reduction of 3-PGA 
to triosephosphate (Bräutigam et  al., 2011; Gowik et  al., 
2011; Bräutigam et al., 2014). In some species, even a reduc-
tion in expression of protein synthesis–related genes has 
been observed (Bräutigam et al., 2011; Gowik et al., 2011). 
This reduction in expression and likely protein abundance 
of highly abundant leaf proteins lead to better nitrogen use 
efficiency in some C4 species (Sage, 2004). The fact that this 
did not happened in all C4 species implies that optimization 
of nitrogen use was not a general selective pressure for the 
evolution of C4 photosynthesis, and it can thus be considered 
a secondary effect.

Intermediate species are comparably rare; there are only 
seven known groups with independent origins of C3–C4 inter-
mediate plants and no direct ancestry to C4 species, meaning 
most of the intermediate species proceeded to C4. Assuming 
that all recent C4 lineages evolved via intermediates (Bauwe, 
2011; Sage et al., 2012; Heckmann et al., 2013; Williams et al., 
2013), the photorespiratory pump independently evolved 73 
times and over 90% of these intermediate plant–containing 
lineages also contain species with C4 photosynthesis. This 
raises the question of why the recent intermediate species are 
still persistent and, for some like the intermediate Mollugo 
group, for such a long time (Christin et al., 2011b).

There are several hypotheses that may explain this observa-
tion. First, the current status may be a snapshot and the spe-
cies remain on their way towards C4. This could surely be true 
for the extant Flaveria species with photorespiratory pumps 
because the genus Flaveria represents the youngest C4 origin 
known to date (Christin et al., 2011a, Heckmann et al., 2013). 
It appears unlikely for the 15 million-year-old Mollugo verti-
cillata (Christin et al., 2011b). Second, for some reason plants 
developed the photorespiratory pump but never used the C4 
pathway for adjusting the nitrogen imbalance. One could 
envision that these plants lack the basal activity of one or 
more enzymes or transporters of the C4 cycle, which prevents 
them from ever entering the slippery slope to C4 photosynthe-
sis. That might have happened as the C4 cycle genes have to be 
duplicated to be released from adaptive conflict but they were 
not. These plants must have developed an alternative way to 

cope with the nitrogen imbalance. For example, amino acids 
carrying two amino groups, like glutamine or asparagine, 
could be considered as transport metabolites, which might 
be superior to using the C4 cycle under certain circumstances 
(Mallmann et  al., 2014). Third, the idea that the establish-
ment of a low activity C4 cycle automatically leads to the 
establishment of the full C4 physiology assumes continuous 
selective pressure. When carbon was no longer limiting for 
some reason or when the environment was variable (Cheng 
et al., 1989), that plant would have been trapped at its current 
stage. Future research on groups with only a photorespira-
tory pump but no C4 photosynthesis will distinguish between 
these alternative hypotheses.

Summary

The evolution of C4 plants occurred in phases that can be 
delineated by the selective pressures that drive the changes. 
Initially, the dense venation pattern is selected for high light, 
high temperature environments, in which soil water avail-
ability prevents stomatal closing if  water conductance is high 
enough. The second phase of evolution is driven by carbon 
limitation, which may occur whenever stomatal aperture is 
limited, such as in salt stress or in drought stress conditions 
or in niches exceptionally rich in other nutrients. The use of 
the C4 cycle to replenish nitrogen after the evolution of the 
photorespiratory pump immediately puts the species on the 
slippery slope towards C4 and species are predicted to slide as 
long as the selective pressure is present. In theory, species may 
slide backwards if  the selective pressure drops. This is only 
possible until further optimizations, like the loss of mesophyll 
activity of photorespiratory enzymes, occur. In this sense, C4 
is a dead end of evolution, albeit a very productive one.
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