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Control of flowering time
Yaron Y Levy∗ and Caroline Dean†

The multiple promotive and repressive pathways controlling
flowering have been further defined by analysis of genetic
interactions and the activation of floral meristem identity
genes. Cloning of additional genes in these pathways has
uncovered some of the molecular processes that control the
timing of the transition to reproductive development.
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Abbreviations
GA gibberellin
PHY phytochrome

Introduction
To reproduce under favourable conditions, plants moder-
ate their intrinsic developmental timing with cues from
the environment, particularly day length, light quality, and
temperature. Physiological studies have led to a general
‘multifactorial model’ [1] which attempts to account for
the diverse flowering responses observed in a variety of
species. In this model, growth regulators and assimilates
act as floral promoters and inhibitors which are required in
appropriate concentrations and at particular times before
flowering is triggered. The genetics of flowering time
support this model [2••,3,4] (Figure 1). Multiple genetic
pathways have been identified, some of which promote
flowering and some of which repress it. Some genes act
independently of growth conditions, while others mediate
responses to environmental cues. In this review, we focus
on recent advances in our understanding of the control of
flowering time, drawing mainly from work with Arabidopsis
as a model system.

Just do it: autonomous promotion
The autonomous promotion pathway (Figure 1) is consid-
ered to promote the transition from vegetative growth to
flowering, independently of environmental cues. Cloning
and analysis of the FCA gene, a component of this pathway,
demonstrated a role for post-transcriptional regulation in
this pathway [5••]. The FCA protein is an RNA-binding
protein with a high degree of similarity, within the
RNA-recognition motifs, to Drosophila proteins SX-1 and
ELAV. These proteins function in fly development to
alternatively splice transcripts in the sex-determination
and neuronal differentiation pathways respectively. The
FCA transcript itself is alternatively spliced and increasing
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Physiological pathways and genes controlling flowering in
Arabidopsis. Physiological studies have identified different pathways
that either promote (+) or repress ( – ) the transition of the apical
meristem from vegetative to inflorescence/floral development.
Only genes specifically mentioned in the text are included in
this figure. The circadian clock (left side of figure) is implicated
in the measurement of photoperiod via the perception of light.
Arabidopsis strains in which flowering is promoted by vernalization
also show strong acceleration of flowering by far-red-enriched
light, so vernalization and perception of light quality appear to be
closely related processes. The inputs from the different pathways are
somehow integrated (symbolised by a question mark) and eventually
lead to activation of inflorescence/floral meristem identity genes. A
major future goal is to analyse the interactions of the different genes
to define these physiological processes in terms of genetic pathways.

the levels of certain FCA transcripts resulted in earlier
flowering. This result suggests that FCA is part of a
post-transcriptional regulatory cascade in which alternative
RNA splicing is an important point of control.

The rather general expression of FCA throughout the
plant was similar to that observed for another gene
of the autonomous promotion pathway, LD [6], and
is consistent with genes in this pathway functioning
throughout development [7]. Furner et al. [8] used X-rays
to generate plants with sectors of fca tissue in an otherwise
wild-type background. Analysis of fca sectors in the two
inner layers (L2 and L3), which were marked by loss
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of a gene near FCA involved in pigmentation, showed
that FCA is not required in the entire apical meristem in
order to produce a phenotypically normal plant [8]. These
results imply that FCA or downstream signals produced
in the L1 (epidermal) layer or in adjacent wild-type
L2/L3 tissue can diffuse within the plant and rescue
the phenotype of the fca sectors. Translocated signals
which promote flowering have been demonstrated in the
elegant genetic analysis of flowering time in pea [3]. The
phenotype of the pea mutant gigas, which is deficient in a
graft-transmissible floral stimulus and is more responsive
to vernalization, has led to speculation about whether
GIGAS is a pea orthologue of FCA [9••].

Seeing the light: photoperiodic induction
Many plants monitor day length (figure 1) as a cue for
flowering at the correct time of year. The promotion
of flowering by photoperiod has received considerable
attention over the years with clear evidence that promotive
and repressive signals, made in the leaves, are translocated
in the phloem exudate to the apex [1]. While there
have been considerable efforts to identify transcripts and
substances induced in leaves that might form the basis
of this floral signal, specific candidates remain elusive
[10–12]. The recent development of a method to induce
synchronous flowering in Arabidopsis in response to one
long day photoperiod [13] will facilitate the important
integration of genetics and physiology studies when
similar experiments are done with Arabidopsis mutants. An
exciting recent development has been the demonstration
that there is a connection between the endogenous
circadian clock and the control of flowering time, probably
via the photoperiodic promotion pathway (Figure 1).
Mutations at the ELF3 locus result in an elongated
hypocotyl (especially under blue light) and early flowering
which is insensitive to photoperiod [14]. elf3 shows no
circadian rhythm in continuous light, thus showing a
connection between the circadian clock and the control
of flowering time [15•] and suggesting a role for ELF3 in
linking light perception to circadian rhythms.

There has also been a focus on regulatory events occurring
at the shoot apex as it switches from vegetative to
reproductive development. Experiments with cultured
apices of Lolium demonstrated that photoperiodic induc-
tion resulted from two signals acting at the apex [16].
The first signal, of an unknown nature, switched the
developmental fate of the shoot meristem cells from
commitment to produce leaves to commitment to produce
flowers, and then the second signal, gibberellin (GA),
triggered expression of this florally determined state. GAs
are also likely to be responsible for the acceleration of
primordium initiation at the apex, an early manifestation
of induction by long day photoperiods [17]. Experiments
in Sinapis aimed at identifying transcripts expressed in the
apex in response to long day photoperiods demonstrated
the induction of two MADS box transcription factor genes
[18] and a gene, FPF1, which is possibly involved in

GA signaling [19]. GAs are clearly involved in multiple
processes related to flowering, and the interaction of GAs
and phytochrome-mediated signaling pathways is com-
plex. Analysis of mutants deficient in both phytochrome
and GA responses has shown that a fully functional GA
system is necessary for the full expression of at least
one manifestation of phytochrome deficiency, an elongated
hypocotyl [20]. Increased responsiveness of phyB mutants
to exogenous GAs [21] and the interesting phenomenon of
floral meristem reversion [22] also suggest an interaction
between phytochrome and GA signaling.

Vernalization: promotion by cold temperature
A long cold temperature treatment (i.e., a winter season)
induces or accelerates flowering in many species. This
phenomenon, known as vernalization, has a number of
unusual features that suggest an epigenetic mechanism as
its basis [23]. Burn et al. [24] proposed that vernalization
causes general DNA demethylation which allows expres-
sion of kaurenoic acid hydroxylase, an important enzyme
in GA biosynthesis. This hypothesis was tested by trans-
forming Arabidopsis plants with a construct expressing an
antisense transcript of a methyltransferase gene (MET1),
resulting in plants with substantially reduced levels of
cytosine methylation [25]. Many developmental abnormal-
ities were seen in these plants, but consistent with the
above hypothesis, the antisense methyltransferase plants
flowered earlier than the wild-type [26]. Two other studies
have also addressed the role of methylation in flowering.
Ronemus et al. [27], using a similar MET1-antisense
construct, and Kakutani et al. [28], working with the
ddm1 mutant, which has decreased DNA methylation but
unaltered methyltransferase activity, noted late flowering
as a frequently appearing phenotype in their plant
lines. These data imply that methylation has a role in
establishing or maintaining different developmental states
of the meristem; Ronemus et al. [27] speculate that there is
a gradient of increasing methylation during development,
acting to change meristem competency and determinacy.
It would be interesting, therefore, to establish whether
this gradual increase in methylation during development
is related to the changes in floral repressor concentration
proposed by the ‘controller of phase switch’ hypothesis
[29]. The level of repressor activity is proposed to decrease
over time due to an internal (developmental) program,
as well as being modulated by external (environmental)
signals. Switches in phase (e.g., from inflorescesce to
floral development) are proposed to occur when repressor
activity drops below the critical level for maintaining the
current phase.

Another approach to understanding the molecular basis
of vernalization has been to identify and analyse mutants
that are impaired in the vernalization response [30•].
Thus, the vrn1 and vrn2 mutants were isolated by mu-
tagenising the late-flowering vernalization-responsive fca-1
mutant followed by selection for individuals exhibiting
a reduced vernalization response. The vrn1 mutation



Control of flowering time Levy and Dean 51

reduced the vernalization response of other late-flower-
ing vernalization-responsive mutants and of Landsberg
erecta, an early flowering genotype of Arabidopsis, under
noninductive photoperiods [30•]. Thus VRN1 appears to
be a component of the vernalization promotion pathway
(Figure 1). Arabidopsis mutants and ecotypes that show a
strong response to vernalization also show an acceleration
of flowering in response to receiving a low ratio of
red to far-red light (for example [31,32]) thus indicating
a response mediated via phytochrome. A recent study
showed that mutants deficient in both phytochrome
A and B still respond to far-red light by flowering
early, implicating other phytochromes in this response
[33]. Interestingly, both vrn1 and vrn2 display additional
photomorphogenic phenotypes (our unpublished data),
further linking light quality perception with vernalization.
Analysis of the VRN genes should identify the molecular
processes important in vernalization and may clarify
the connection between vernalization and light quality
perception.

Not so fast: repression of flowering
In Arabidopsis, the identification of recessive mutations
that cause early flowering [34], in some cases with no
vegetative growth at all (e.g. embryonic flowering 1, emf1),
suggests that flowering is normally actively repressed
beginning from embryonic development. Physiological
and genetic experiments with tobacco [35] and pea
[3] have shown that the roots and leaves respectively,
of these plants produce a substance which represses
flowering. The synthesis or transport of the inhibitor
produced in pea leaves is reduced by a PHYA-mediated
signaling pathway [36]. A major gene that represses
flowering in Arabidopsis is FRIGIDA (FRI), with dominant
alleles causing late flowering and conferring a winter
growth habit [37] (Figure 1). Recently, Sanda et al. [38•]
extended the known range of ecotypes in which FRI has
been shown to be the major determinant of flowering
time in natural populations. Repression of flowering by
FRI requires dominant alleles at a second locus, FLC
[39]. Synergistic interactions were found between FLC
and mutants impaired in the autonomous promotion of
flowering (fca, fpa, and fve) suggesting that FLC acts
antagonistically to FCA, FPA and FVE function [40•]. In
other words, these results support the notion that FLC
contributes to repression of flowering which is antagonistic
to the autonomous promotion pathway. Orthologues of
FRI and FLC are likely to be important in the control
of flowering in other species; for example, the two major
quantitative trait loci conferring vernalization requirement
in Brassica species cosegregate with markers linked to FRI
and FLC [41•].

Taking the next step: where timing and
meristem identity meet
At some point in time, the balance or levels of promotive
and repressive factors is such that flowering is triggered.
Classically, the vegetative meristem is thought to become

competent to respond to inductive signals and then at
a certain point to be ‘evoked’ into a florally determined
state. Thus evocation is defined as ‘the events that occur
in the apex that commit it to flower’ [42] and may
be defined at the molecular level by the expression of
genes regulating meristem identity, such as LEAFY (LFY),
TERMINAL FLOWER 1 (TFL1), and APETALA 1 (AP1)
[43] (Figure 1). Recently, the temporal sequence of LFY
and AP1 expression during the induction of flowering
has been established in relation to ‘determination’ [44],
that is, the point at which the developmental fate of
the meristem cells is switched. An increase in LFY
expression preceded determination, while AP1 expression
was always first observed after determination. Blazquez
et al. [45] have shown that LFY expression increased
rapidly and dramatically when plants were shifted from
non-inductive to inductive photoperiods, suggesting that
the LFY promoter is a target of photoperiodic promotion.
The CONSTANS (CO) gene (Figure 1) promotes flowering
in response to long days [46]. A system in which wild-type
CO protein could be inducibly activated in co mutant
plants allowed the role of CO in the expression of
meristem identity genes to be analysed [47••]. CO was
sufficient to induce flowering and to initiate transcription
of LFY and TFL1 in co plants as rapidly as when these
genes are induced by long day photoperiods in wild-type
plants. AP1 transcription, however, was induced more
slowly by CO compared to long day photoperiods in
wild-type plants. Simon et al. [47••] conclude that CO
acts in a pathway that is sufficient to activate LFY
and TFL1 transcription and that rapid activation of AP1
requires an additional pathway. Proteins from Arabidopsis
and Antirrhinum (snapdragon) that recognise and bind to
regions of the AP1/SQUAMOSA promoter have recently
been identified [48,49] and will aid understanding of how
AP1 expression is connected to the control of flowering
time. FWA and FT, two genes defined by mutations
causing late flowering (Figure 1), also appear necessary
for the function of some of the genes affecting meristem
identity [50] as lfy fwa or lfy ft double mutants show a
severe inflorescence phenotype, stronger than that in
lfy ap1 double mutants, where no flower-like structures
were produced. Whether any of the genes that control
flowering time directly regulate any of the meristem
identity genes, such as LFY, remains to be seen.

There are now several examples of mutated flowering
time genes which cause the plants to exhibit altered
inflorescence or floral morphology (e.g. [14,51]), and
mutated meristem identity genes which cause altered
flowering time. The terminal flower 1 (tfl1) mutant shows
accelerated transitions from vegetative to inflorescence
formation and from secondary inflorescence to flower
production [52]. The inflorescence also becomes determi-
nate, showing that wild-type TFL1 function is involved
in the suppression of flower formation at the apex thus
resulting in the normally indeterminate inflorescence. The
Arabidopsis TFL1 gene has been cloned by virtue of
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its homology to the Antirrhinum orthologue CENTRORA-
DIALIS [53••] and by T-DNA insertional mutagenesis
[54]. TFL1 encodes a protein with limited similarity to
animal phosphatidylethanolamine-binding proteins which
can associate with membrane protein complexes. An
example of an early flowering mutant with altered
meristem identity gene expression is curly leaf (clf). The
clf mutant was shown to express the AGAMOUS (AG)
gene ectopically [55••]. The AG gene product is normally
required to direct stamen and carpel development in
the flower. Thus CLF function represses AG transcription
in leaves, inflorescence stems and flowers. The ectopic
expression of AG in the clf mutant results in early flowering
and curling of the leaves. A transposon-tagged allele of
clf enabled the gene to be cloned; it encodes a protein
with extensive homology to a Drosophila Polycomb-group
(Pc-G) gene, required for repression of homeotic gene
activity in fly development [55••].

Conclusions
The increasing number of flowering time genes that
have been cloned will provide a basis for teasing apart
the regulatory pathways that control the transition from
vegetative growth to flowering. A major challenge is to
define the epistatic relationships among genes involved in
flowering time. A recent analysis of epistasis among ten
late flowering Arabidopsis mutants [56] has revealed that
the interaction of these genes is more complicated than
originally thought. Furthermore, newly identified floral
promoters (e.g. [51,57]) and repressors will need to be
incorporated into the genetic model of the control of
flowering time. Clearly much needs to be done, but the
continued integration of studies involving physiology and
molecular genetics will provide exciting discoveries into
how plants balance the internal and external signals which
control the transition to reproductive development.
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